
CSCI 210: Computer Architecture

Lecture 32: Control Hazards

Stephen Checkoway

Oberlin College

Dec. 22, 2021

Slides from Cynthia Taylor

Announcements

• Problem Set 10 due Sunday, January 2

• Lab 8 due Sunday, January 2

• Office Hours tomorrow 13:30–14:30

Given a pipeline where branches are resolved by the ALU – let’s assume we stall until

we know the branch outcome. How many cycles will you lose per branch?

Stalling the pipeline

Selection cycles

A 0

B 1

C 2

D 3

E 4

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble BubbleBubble

Stalling for Branch Hazards

• Seems wasteful, particularly when the branch isn’t taken.

• Makes all branches cost 4 cycles.

• What if we just assume the branch isn’t taken?

Assume Branch Not Taken

works pretty well when you’re right

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Assume Branch Not Taken

same performance as stalling when you’re wrong

beq $4, $0, there

and $12, $2, $5

or ...

add ...

there: sub $12, $4, $2

IM Reg

IM Reg

IM

IM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Flush

Flush

Flush

Let’s improve the pipeline so we move branch resolution to Decode + assume

branches are not taken. How many cycles would we lose then on a taken branch?

Stalling the pipeline

Selection cycles

A 0

B 1

C 2

D 3

E 4

Example: Branch Taken

Example: Branch Taken

Branch Hazards – Assume Not Taken

• Great if most of your branches aren’t taken.

• What about loops which are taken 95% of the time?

– We would like the option of assuming not taken for some branches,

and taken for others, depending on what they usually do

Branch Hazards – Predicting Taken

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw

Required information to predict branch outcomes:

1. An instruction is a branch before decode

2. The target of the branch (where it branches to)

3. Values in the registers the branch will compare

Selection Required

knowledge

A 2, 3

B 1, 2, 3

C 1, 2

D 2

E None of the

above

Branch Target Buffer

• Keeps track of the PCs of recently

seen branches and their targets.

• Consult during Fetch (in parallel

with Instruction Memory read) to

determine:

– Is this a branch?

– If so, what is the target

PC Target

0x40024 0x4018C

0x40188 0x40028

⋮ ⋮

Branch Hazards – Predict Taken

• Static policy:

– Forward branches (if statements) predict not taken

– Backward branches (loops) predict taken

• Dynamic prediction

• Branch Delay Slots

Branch Delay Slot

beq $4, $0, there

and $12, $2, $5

there: or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Branch delay slot instruction (next instruction after a branch) is executed

even if the branch is taken.

Which instructions could we put in the branch

delay slot?

1 add $5, $3, $7

2 add $9, $1, $3

3 sub $6, $1, $4

4 and $7, $8, $2

5 beq $6, $7, there

nop /* branch delay slot */

6 add $9, $1, $2

7 sub $2, $9, $5

...

there:

8 mult $2, $10, $9

…

Selection Safe

instructions

A 2

B 1,2

C 2,6

D 1,2,7,8

E None of the

above

Filling the branch delay slot

1 add $5, $3, $7

2 add $9, $1, $3

3 sub $6, $1, $4

4 and $7, $8, $2

5 beq $6, $7, there

nop # branch delay slot

6 add $9, $1, $2

7 sub $2, $9, $5

...

there:

8 mult $2, $10, $9

…

No-$7 overwritten

Safe, $1 and $3 are fine

No-$6

No-$7

Not safe ($9 on taken path)

Not safe (needs $9 not yet produced)

Not safe ($2 is used before overwritten)

Filling the branch delay slot

• The branch delay slot is only

useful if you can find something

to put there.

• If you can’t find anything, you

must put a nop to insure

correctness.

Which MIPS instruction is the best nop?

A.addi $t0, $t0, 0

B.sll $zero, $zero, 0

C.or $v0, $v0, $zero

D.and $s0, $s0, $zero

E.add $zero, $t0, $t0

Unnecessary load-use penalty

lw $t0, 0($s0)

add $zero, $t0, $t0

This doesn’t matter for filling the branch delay slot because even
lw ; beq; add can’t cause a load-use stall

MIPS uses the all-zero instruction as nop:

sll $zero, $zero, 0

Branch Delay Slots

• This works great for this implementation of the architecture.

• What about the MIPS R10000, which has a 5-cycle branch

penalty, and executes 4 instructions per cycle???

Dynamic Branch Prediction

• Can we guess the outcome of branches?

• What should we base that guess on?

1-bit Branch Predictor

1

0

1

program counter

for (i=0;i<10;i++) {

...

...

}

...

...

add $i, $i, #1

beq $i, #10, loop

Every time branch is taken, set bit to 1, untaken, 0.

Assume we start with our 1-bit predictor at 1,

for Taken, and change it to 0 whenever the

branch is not taken. How accurate will it be for

the branch pattern TTNTTNTT

A. 3/8

B. 4/8

C. 5/8

D. 8/8

E. None of the above

Two-bit predictors give better loop prediction

for (i=0;i<10;i++) {

...

...

}

...

...

add $i, $i, #1

beq $i, #10, loop

Strongly Taken
11

Weakly Taken
10

Weakly Not Taken
01

Strongly Not Taken
00

D
e
c
re

m
e
n
t

w
h
e
n
 n

o
t

ta
k
e
n

In
c
re

m
e
n
t

w
h
e
n
 t

a
k
e
n

branch address

00

PHT

Suppose we have the following branch pattern.

What is the accuracy of a 1-bit and 2-bit branch

predictors. Assume initial values of 1 (1-bit) and

(10) 2-bit.

T T N T N

Strongly Taken
11

Weakly Taken
10

Weakly Not Taken
01

Strongly Not Taken
00

D
e
c
re

m
e
n
t

w
h
e
n
 n

o
t

ta
k
e
n

In
c
re

m
e
n
t

w
h
e
n
 t

a
k
e
n

1 bit 2 bit

A 2/5 2/5

B 3/5 2/5

C 2/5 3/5

D 1/5 4/5

E. None of the above

Branch Prediction

• Latest branch predictors are significantly more sophisticated,

using more advanced correlating techniques, larger structures,

and even AI techniques

• Use patterns of branches (local history) and recent other

branch history (global history) to make predictions

Putting it all together.

For a given program on our 5-stage MIPS
pipeline processor:

• 20% of instructions are loads, 50% of
instructions following a load are arithmetic
instructions depending on the load. Recall
load hazards are a 1 cycle stall.

• 20% of instructions are branches. Using
dynamic branch prediction, we achieve 80%
prediction accuracy. Mispredicted branches
are a 1 cycle stall.

What is the CPI of your program?

Assume a base CPI of 1.

Selection CPI

A 0.76

B 0.9

C 1.0

D 1.14

E None of the

above

Control Hazards — Key Points

• Control (or branch) hazards arise because we must fetch the

next instruction before we know if we are branching or where

we are branching.

• Control hazards are detected in hardware.

• We can reduce the impact of control hazards through:

– early detection of branch address and condition

– branch prediction

– branch delay slots

Pipelining — Key Points

• Pipelining focuses on improving instruction throughput, not

individual instruction latency.

• Data hazards can be handled by hardware or software – but

most modern processors have hardware support for stalling

and forwarding.

• Control hazards can be handled by hardware or software – but

most modern processors use Branch Target Buffers and

advanced dynamic branch prediction to reduce the hazard.

• ET = IC*CPI*CT

Reading

• Reading for today’s lecture since we’re ahead: 5.9

• Next lecture: Caches

– Section 6.2

