CSCI 210: Computer Architecture
Lecture 32: Control Hazards

Stephen Checkoway
Oberlin College

Dec. 22, 2021
Slides from Cynthia Taylor

Announcements

* Problem Set 10 due Sunday, January 2

* Lab 8 due Sunday, January 2

e Office Hours tomorrow 13:30-14:30

Stalling the pipeline
Given a pipeline where branches are resolved by the ALU — let’s assume we stall until

we know the branch outcome. How many cycles will you lose per branch?

: o
M
¥ \ | EXMEN
1 . \ [] T
—:_p. nt R :
' W | mEmwe
IFND | |
Add
Add
¢ . Add rgsul
Shift
laft 2

l Instruction

A 0] Wite L

Read ' 7
PO el Miclclress register 1 dR[EE‘Id
Selection cycles -z ‘ '
oo (= register 2 3 T >
Instrucion e
y mamary | Registers Read AL ALL Read
Wirite data 2 result Addrass i S
ragistar data | |
u

Instruction
16 32 g] |
[15 0 i Sign y | ALU

Instruction
120 18]

1
2

3 Instruction ﬂ

4 - T -‘

[15 11]

m O O ®

beq $4, SO, there

and S12, S2, S5

or ...

add ...

SW ...

Stalling for Branch Hazards

CC1

IM

CC2

CC3

>

CC4

CC5

Reg

o\

IM

CCé CC7 CC8
Reg ; DM Reg
IM Reg 9 DM Reg
IM Reg > |_ DM (——
IM Reg 97

Stalling for Branch Hazards

* Seems wasteful, particularly when the branch isn’t taken.
* Makes all branches cost 4 cycles.

* What if we just assume the branch isn’t taken?

Assume Branch Not Taken

works pretty well when you're right

beq $4, SO, there

and $12, S2, S5

or...

add ...

SW ...

CC1

IM

CC8

cc2 Cc3 CC4 CC5 CC6 CC7
Reg 97 DM Reg
IM |——[Reg >¥ DM Reg
IM Reg \\97 DM Reg
IM \ Reg >\ DM
-

Reg

Assume Branch Not Taken

same performance as stalling when you’re wrong

CC1 CcC2 CC3 CCa CC5 CCoé CC7 CC8

beq $4, SO, there| IM Reg >\

and $12, $2, $5 IM |——| Reg
or... IM
add ...

there: sub S12, $4, S2

Reg 97

Stalling the pipeline
Let’s improve the pipeline so we move branch resolution to Decode + assume

branches are not taken. How many cycles would we lose then on a taken branch?

and $12,$2,$5 beq $1, $3, 7 ' sub$10,$4,$8 before<1> i before<2>
IF.Flush ' E
i / Hazard ,
detection | .
unit) ' '
IDJEX : l
@ I“’E EX/MEM :
> (C: 58 u M WB —uﬂfMMB
’_,7 OM EX \—u M WB
44 70
o - s
o Regi L M
Selection | cycles S . u
o Data X
7 memory J
10 _‘

B 1
C 2
D 3 Clock 3
E 4

Example: Branch Taken

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

|IF.Flush

/ Hazard \

detection |
unit /

g____________._________._

3 [

xc=

Data
memory

6Q

T
Forwarding :

unit)

Clock 3

IF.Flush

Example: Branch Taken

Iw $4, 50($7)

Bubble (nop)

beq $1, $3, 7

sub $10, .

before<1>

Hazard

:' detection -I
unit)

Clock 4

Shift
left 2

i
pEEp
©

Registers

(o)

W

Data
memory

MEM/WB

Forwarding

unit -
T

Branch Hazards — Assume Not Taken

e Great if most of your branches aren’t taken.

 What about loops which are taken 95% of the time?

— We would like the option of assuming not taken for some branches,
and taken for others, depending on what they usually do

Branch Hazards — Predicting Taken

cc1 cc2 cc3 cCa cCs ccé cCc7 ccs
beq $2, $1, here | IM Reg >‘JE> DM Reg
| N
here: lw M Reg >} DM Reg

Required information to predict branch outcomes: Selection | Required
knowledge

1. Aninstruction is a branch before decode

A 2,3
2. The target of the branch (where it branches to) B 1,2,3
: : . C 1,2
3. Values in the registers the branch will compare b)
E None of the

above

Branch Target Buffer

* Keeps track of the PCs of recently _4002 p -8C
X X

seen branches and their targets. 0440188 P —

e Consult during Fetch (in parallel
with Instruction Memory read) to

determine:
— Is this a branch?
— If so, what is the target

Branch Hazards — Predict Taken

 Static policy:
— Forward branches (if statements) predict not taken

— Backward branches (loops) predict taken

* Dynamic prediction

* Branch Delay Slots

Branch Delay Slot

beq $4, SO, there| IM Reg \ 97 DM Reg

CC8

and $12, $2, $5 IM Reg ; DM Reg
there: or ... IM Reg 9 DM Reg

add ... M Reg > }—{DM——
SW . IM Reg 97

Branch delay slot instruction (next instruction after a branch) is executed
even if the branch is taken.

Which instructions could we put in the branch

U B W N =

add S5, S3, 57

add $9, $1, S3

sub S6, S1, S4

and S7,S8, S2

beq $6, $7, there

nop /* branch delay slot */

6| add S9, S1, S2

sub S2, S9, S5

there:
mult S2, S10, S9

delay slot?

Selection | Safe
instructions

A

B

C

2

1,2

2,6

1,2,7,8

None of the
above

ui p W N =

()

Filling the branch delay slot

add $5, $3, $7

add $9, $1, $3

sub $6, $1, %4

and $7, $8, $2

beq $6, $7, there

nop # branch delay
add $9, $1, $2

sub $2, $9, $5

there:
mult $2, $10, $9

No-S7 overwritten
Safe, S1 and S3 are fine
No-S6

No-S7

slot
Not safe (S9 on taken path)

Not safe (needs $9 not yet produced)

Not safe (S2 is used before overwritten)

Filling the branch delay slot

* The branch delay slot is only
useful if you can find something
to put there.

* If you can’t find anything, you
must put a nop to insure
correctness.

. From befare

. From target

add $s1, $s2, $s3

sub $td, $i5, 56 <

if 552 = 0 then ——
add $s1, $s2, $s3
| Delay slot |
if 351 = 0then —
= | Delaysiot |
Becomes Becomes
if $52 = O then —

ladd $s1, $s2, $s3 |

PP

add $s1, $s2, $s3

if $s1 = 0 then ——

[sub $t4, $t5, $t6 |

. From fall through

add 3s1, 3s2, 353

if $51 = 0 then

| Delayslot |

sub Bt 35, Ht6

Becomes

add $s1, $s2, 3s3

if $s1 = 0 then ——

[sub $td, $t5, $t6 |

[I

H O Q o »

Which MIPS instruction is the best nop?

.addi $t0, $t0, O

.sll Szero, $zero, O
. Or Sv0, Sv0, S$zero
.and S$s0, $s0, Szero
.add $Szero, $t0, StO

Unnecessary load-use penalty

1w St0, 0(S$Ss0)
add Szero, St0, StO

This doesn’t matter for filling the branch delay slot because even
lw ; beqg; add can’t cause aload-use stall

MIPS uses the all-zero instruction as nop:
sll Szero, Szero, O

Branch Delay Slots

* This works great for this implementation of the architecture.

 What about the MIPS R10000, which has a 5-cycle branch
penalty, and executes 4 instructions per cycle???

Dynamic Branch Prediction

 Can we guess the outcome of branches?

 What should we base that guess on?

1-bit Branch Predictor

program counter

L |

Every time branch is taken, set bit to 1, untaken, O.

\4

[=]o |-

for (i=0;i<10;i++) {
)

add Si, Si, #1
beq Si, #10, loop

Assume we start with our 1-bit predictor at 1,
for Taken, and change it to O whenever the
branch is not taken. How accurate will it be for
the branch pattern TTNTTNTT

A. 3/8
B. 4/8
C. 5/8
D. 8/8
E. None of the above

Two-bit predictors give better loop prediction

Strongly Taken
11
PHT P
branch address for (i=0;i<10;i++) {
(I
» 00 Weakly Taken

10 4 } l
add Si, Si, #1
beq Si, #10, loop

Weakly Not Taken
01

Decrement when not taken

Increment when taken

Strongly Not Taken
00

Suppose we have the following branch pattern.
What is the accuracy of a 1-bit and 2-bit branch
predictors. Assume initial values of 1 (1-bit) and
(10) 2-bit.

TTNTN
_|1bit 2bit
A 2/5 2/5
B 3/5 2/5
C 2/5 3/5
D 1/5 4/5
E. None of the above

Decrement when not taken

Increment when taken

Branch Prediction

e Latest branch predictors are significantly more sophisticated,
using more advanced correlating techniques, larger structures,
and even Al techniques

e Use patterns of branches (local history) and recent other
branch history (global history) to make predictions

Putting it all together.

For a given program on our 5-stage MIPS
pipeline processor:

e 20% of instructions are loads, 50% of

instructions following a load are arithmetic .
instructions depending on the load. Recall crl
load hazards are a 1 cycle stall. A 0.76
* 20% of instructions are branches. Using B 0.9
dynamic branch prediction, we achieve 80% C 1.0
prediction accuracy. Mispredicted branches
are a 1 cycle stall. D o
E None of the
above

What is the CPI of your program?
Assume a base CPI of 1.

Control Hazards — Key Points

* Control (or branch) hazards arise because we must fetch the
next instruction before we know if we are branching or where

we are branching.
* Control hazards are detected in hardware.
 We can reduce the impact of control hazards through:

— early detection of branch address and condition

— branch prediction
— branch delay slots

Pipelining — Key Points

Pipelining focuses on improving instruction throughput, not
individual instruction latency.

Data hazards can be handled by hardware or software — but
most modern processors have hardware support for stalling
and forwarding.

Control hazards can be handled by hardware or software — but
most modern processors use Branch Target Buffers and
advanced dynamic branch prediction to reduce the hazard.

ET = IC*CPI*CT

Reading

* Reading for today’s lecture since we’re ahead: 5.9

e Next lecture: Caches
— Section 6.2

